Second Course in Ordinary Differential Equations for Scientists and Engineers

Second Course in Ordinary Differential Equations for Scientists and Engineers

Author: Mayer Humi

Publisher: Springer Science & Business Media

ISBN: 9781461238324

Category: Mathematics

Page: 441

View: 105

The world abounds with introductory texts on ordinary differential equations and rightly so in view of the large number of students taking a course in this subject. However, for some time now there is a growing need for a junior-senior level book on the more advanced topics of differential equations. In fact the number of engineering and science students requiring a second course in these topics has been increasing. This book is an outgrowth of such courses taught by us in the last ten years at Worcester Polytechnic Institute. The book attempts to blend mathematical theory with nontrivial applications from varipus disciplines. It does not contain lengthy proofs of mathemati~al theorems as this would be inappropriate for its intended audience. Nevertheless, in each case we motivated these theorems and their practical use through examples and in some cases an "intuitive proof" is included. In view of this approach the book could be used also by aspiring mathematicians who wish to obtain an overview of the more advanced aspects of differential equations and an insight into some of its applications. We have included a wide range of topics in order to afford the instructor the flexibility in designing such a course according to the needs of the students. Therefore, this book contains more than enough material for a one semester course.

A Course in Ordinary Differential Equations

A Course in Ordinary Differential Equations

Author: Stephen A. Wirkus

Publisher: CRC Press

ISBN: 9781420010411

Category: Mathematics

Page: 688

View: 151

The first contemporary textbook on ordinary differential equations (ODEs) to include instructions on MATLAB, Mathematica, and Maple A Course in Ordinary Differential Equations focuses on applications and methods of analytical and numerical solutions, emphasizing approaches used in the typical engineering, physics, or mathematics student's field o

A Course in Ordinary Differential Equations

A Course in Ordinary Differential Equations

Author: Bindhyachal Rai

Publisher: CRC Press

ISBN: 0849309921

Category: Mathematics

Page: 463

View: 888

Designed as a text for both under and postgraduate students of mathematics and engineering, A Course in Ordinary Differential Equations deals with theory and methods of solutions as well as applications of ordinary differential equations. The treatment is lucid and gives a detailed account of Laplace transforms and their applications, Legendre and Bessel functions, and covers all the important numerical methods for differential equations.

A Course in Ordinary Differential Equations, Second Edition

A Course in Ordinary Differential Equations, Second Edition

Author: Stephen A. Wirkus

Publisher: Chapman and Hall/CRC

ISBN: 1466509082

Category: Mathematics

Page: 807

View: 590

A Course in Ordinary Differential Equations, Second Edition teaches students how to use analytical and numerical solution methods in typical engineering, physics, and mathematics applications. Lauded for its extensive computer code and student-friendly approach, the first edition of this popular textbook was the first on ordinary differential equations (ODEs) to include instructions on using MATLAB®, Mathematica®, and MapleTM. This second edition reflects the feedback of students and professors who used the first edition in the classroom. New to the Second Edition Moves the computer codes to Computer Labs at the end of each chapter, which gives professors flexibility in using the technology Covers linear systems in their entirety before addressing applications to nonlinear systems Incorporates the latest versions of MATLAB, Maple, and Mathematica Includes new sections on complex variables, the exponential response formula for solving nonhomogeneous equations, forced vibrations, and nondimensionalization Highlights new applications and modeling in many fields Presents exercise sets that progress in difficulty Contains color graphs to help students better understand crucial concepts in ODEs Provides updated and expanded projects in each chapter Suitable for a first undergraduate course, the book includes all the basics necessary to prepare students for their future studies in mathematics, engineering, and the sciences. It presents the syntax from MATLAB, Maple, and Mathematica to give students a better grasp of the theory and gain more insight into real-world problems. Along with covering traditional topics, the text describes a number of modern topics, such as direction fields, phase lines, the Runge-Kutta method, and epidemiological and ecological models. It also explains concepts from linear algebra so that students acquire a thorough understanding of differential equations.

A Short Course in Ordinary Differential Equations

A Short Course in Ordinary Differential Equations

Author: Qingkai Kong

Publisher: Springer

ISBN: 9783319112398

Category: Mathematics

Page: 267

View: 763

This text is a rigorous treatment of the basic qualitative theory of ordinary differential equations, at the beginning graduate level. Designed as a flexible one-semester course but offering enough material for two semesters, A Short Course covers core topics such as initial value problems, linear differential equations, Lyapunov stability, dynamical systems and the Poincaré—Bendixson theorem, and bifurcation theory, and second-order topics including oscillation theory, boundary value problems, and Sturm—Liouville problems. The presentation is clear and easy-to-understand, with figures and copious examples illustrating the meaning of and motivation behind definitions, hypotheses, and general theorems. A thoughtfully conceived selection of exercises together with answers and hints reinforce the reader's understanding of the material. Prerequisites are limited to advanced calculus and the elementary theory of differential equations and linear algebra, making the text suitable for senior undergraduates as well.

Ordinary Differential Equations

Ordinary Differential Equations

Author: D. Somasundaram

Publisher: CRC Press

ISBN: 0849309883

Category: Mathematics

Page: 295

View: 113

Though ordinary differential equations is taught as a core course to students in mathematics and applied mathematics, detailed coverage of the topics with sufficient examples is unique. Written by a mathematics professor and intended as a textbook for third- and fourth-year undergraduates, the five chapters of this publication give a precise account of higher order differential equations, power series solutions, special functions, existence and uniqueness of solutions, and systems of linear equations. Relevant motivation for different concepts in each chapter and discussion of theory and problems-without the omission of steps-sets Ordinary Differential Equations: A First Course apart from other texts on ODEs. Full of distinguishing examples and containing exercises at the end of each chapter, this lucid course book will promote self-study among students.

A First Course in Ordinary Differential Equations

A First Course in Ordinary Differential Equations

Author: Martin Hermann

Publisher: Springer Science & Business

ISBN: 9788132218357

Category: Mathematics

Page: 288

View: 629

This book presents a modern introduction to analytical and numerical techniques for solving ordinary differential equations (ODEs). Contrary to the traditional format—the theorem-and-proof format—the book is focusing on analytical and numerical methods. The book supplies a variety of problems and examples, ranging from the elementary to the advanced level, to introduce and study the mathematics of ODEs. The analytical part of the book deals with solution techniques for scalar first-order and second-order linear ODEs, and systems of linear ODEs—with a special focus on the Laplace transform, operator techniques and power series solutions. In the numerical part, theoretical and practical aspects of Runge-Kutta methods for solving initial-value problems and shooting methods for linear two-point boundary-value problems are considered. The book is intended as a primary text for courses on the theory of ODEs and numerical treatment of ODEs for advanced undergraduate and early graduate students. It is assumed that the reader has a basic grasp of elementary calculus, in particular methods of integration, and of numerical analysis. Physicists, chemists, biologists, computer scientists and engineers whose work involves solving ODEs will also find the book useful as a reference work and tool for independent study. The book has been prepared within the framework of a German–Iranian research project on mathematical methods for ODEs, which was started in early 2012.

Ordinary Differential Equations

Ordinary Differential Equations

Author: William A. Adkins

Publisher: Springer Science & Business Media

ISBN: 9781461436188

Category: Mathematics

Page: 799

View: 829

Unlike most texts in differential equations, this textbook gives an early presentation of the Laplace transform, which is then used to motivate and develop many of the remaining differential equation concepts for which it is particularly well suited. For example, the standard solution methods for constant coefficient linear differential equations are immediate and simplified, and solution methods for constant coefficient systems are streamlined. By introducing the Laplace transform early in the text, students become proficient in its use while at the same time learning the standard topics in differential equations. The text also includes proofs of several important theorems that are not usually given in introductory texts. These include a proof of the injectivity of the Laplace transform and a proof of the existence and uniqueness theorem for linear constant coefficient differential equations. Along with its unique traits, this text contains all the topics needed for a standard three- or four-hour, sophomore-level differential equations course for students majoring in science or engineering. These topics include: first order differential equations, general linear differential equations with constant coefficients, second order linear differential equations with variable coefficients, power series methods, and linear systems of differential equations. It is assumed that the reader has had the equivalent of a one-year course in college calculus.