Artificial Intelligence-based Internet of Things Systems

Artificial Intelligence-based Internet of Things Systems

Author: Souvik Pal

Publisher: Springer Nature

ISBN: 9783030870591

Category: Technology & Engineering

Page: 509

View: 315

The book discusses the evolution of future generation technologies through Internet of Things (IoT) in the scope of Artificial Intelligence (AI). The main focus of this volume is to bring all the related technologies in a single platform, so that undergraduate and postgraduate students, researchers, academicians, and industry people can easily understand the AI algorithms, machine learning algorithms, and learning analytics in IoT-enabled technologies. This book uses data and network engineering and intelligent decision support system-by-design principles to design a reliable AI-enabled IoT ecosystem and to implement cyber-physical pervasive infrastructure solutions. This book brings together some of the top IoT-enabled AI experts throughout the world who contribute their knowledge regarding different IoT-based technology aspects.

Recent Trends and Advances in Artificial Intelligence and Internet of Things

Recent Trends and Advances in Artificial Intelligence and Internet of Things

Author: Valentina E. Balas

Publisher: Springer Nature

ISBN: 9783030326449

Category: Technology & Engineering

Page: 607

View: 358

This book covers all the emerging trends in artificial intelligence (AI) and the Internet of Things (IoT). The Internet of Things is a term that has been introduced in recent years to define devices that are able to connect and transfer data to other devices via the Internet. While IoT and sensors have the ability to harness large volumes of data, AI can learn patterns in the data and quickly extract insights in order to automate tasks for a variety of business benefits. Machine learning, an AI technology, brings the ability to automatically identify patterns and detect anomalies in the data that smart sensors and devices generate, and it can have significant advantages over traditional business intelligence tools for analyzing IoT data, including being able to make operational predictions up to 20 times earlier and with greater accuracy than threshold-based monitoring systems. Further, other AI technologies, such as speech recognition and computer vision can help extract insights from data that used to require human review. The powerful combination of AI and IoT technology is helping to avoid unplanned downtime, increase operating efficiency, enable new products and services, and enhance risk management.

Hands-On Artificial Intelligence for IoT

Hands-On Artificial Intelligence for IoT

Author: Amita Kapoor

Publisher: Packt Publishing Ltd

ISBN: 9781788832762

Category: Computers

Page: 390

View: 884

Build smarter systems by combining artificial intelligence and the Internet of Things—two of the most talked about topics today Key FeaturesLeverage the power of Python libraries such as TensorFlow and Keras to work with real-time IoT dataProcess IoT data and predict outcomes in real time to build smart IoT modelsCover practical case studies on industrial IoT, smart cities, and home automationBook Description There are many applications that use data science and analytics to gain insights from terabytes of data. These apps, however, do not address the challenge of continually discovering patterns for IoT data. In Hands-On Artificial Intelligence for IoT, we cover various aspects of artificial intelligence (AI) and its implementation to make your IoT solutions smarter. This book starts by covering the process of gathering and preprocessing IoT data gathered from distributed sources. You will learn different AI techniques such as machine learning, deep learning, reinforcement learning, and natural language processing to build smart IoT systems. You will also leverage the power of AI to handle real-time data coming from wearable devices. As you progress through the book, techniques for building models that work with different kinds of data generated and consumed by IoT devices such as time series, images, and audio will be covered. Useful case studies on four major application areas of IoT solutions are a key focal point of this book. In the concluding chapters, you will leverage the power of widely used Python libraries, TensorFlow and Keras, to build different kinds of smart AI models. By the end of this book, you will be able to build smart AI-powered IoT apps with confidence. What you will learnApply different AI techniques including machine learning and deep learning using TensorFlow and KerasAccess and process data from various distributed sourcesPerform supervised and unsupervised machine learning for IoT dataImplement distributed processing of IoT data over Apache Spark using the MLLib and H2O.ai platformsForecast time-series data using deep learning methodsImplementing AI from case studies in Personal IoT, Industrial IoT, and Smart CitiesGain unique insights from data obtained from wearable devices and smart devicesWho this book is for If you are a data science professional or a machine learning developer looking to build smart systems for IoT, Hands-On Artificial Intelligence for IoT is for you. If you want to learn how popular artificial intelligence (AI) techniques can be used in the Internet of Things domain, this book will also be of benefit. A basic understanding of machine learning concepts will be required to get the best out of this book.

Convergence of Deep Learning and Artificial Intelligence in Internet of Things

Convergence of Deep Learning and Artificial Intelligence in Internet of Things

Author: Ajay Rana

Publisher: CRC Press

ISBN: 9781000822083

Category: Computers

Page: 329

View: 118

This book covers advances and applications of smart technologies including the Internet of Things (IoT), artificial intelligence, and deep learning in areas such as manufacturing, production, renewable energy, and healthcare. It also covers wearable and implantable biomedical devices for healthcare monitoring, smart surveillance, and monitoring applications such as the use of an autonomous drone for disaster management and rescue operations. It will serve as an ideal reference text for senior undergraduate, graduate students, and academic researchers in the areas such as electrical engineering, electronics and communications engineering, computer engineering, and information technology. • Covers concepts, theories, and applications of artificial intelligence and deep learning, from the perspective of the Internet of Things. • Discusses powers predictive analysis, predictive maintenance, and automated processes for making manufacturing plants more efficient, profitable, and safe. • Explores the importance of blockchain technology in the Internet of Things security issues. • Discusses key deep learning concepts including trust management, identity management, security threats, access control, and privacy. • Showcases the importance of intelligent algorithms for cloud-based Internet of Things applications. This text emphasizes the importance of innovation and improving the profitability of manufacturing plants using smart technologies such as artificial intelligence, deep learning, and the Internet of Things. It further discusses applications of smart technologies in diverse sectors such as agriculture, smart home, production, manufacturing, transport, and healthcare.

Challenges and Opportunities for the Convergence of IoT, Big Data, and Cloud Computing

Challenges and Opportunities for the Convergence of IoT, Big Data, and Cloud Computing

Author: Velayutham, Sathiyamoorthi

Publisher: IGI Global

ISBN: 9781799831136

Category: Computers

Page: 350

View: 879

In today’s market, emerging technologies are continually assisting in common workplace practices as companies and organizations search for innovative ways to solve modern issues that arise. Prevalent applications including internet of things, big data, and cloud computing all have noteworthy benefits, but issues remain when separately integrating them into the professional practices. Significant research is needed on converging these systems and leveraging each of their advantages in order to find solutions to real-time problems that still exist. Challenges and Opportunities for the Convergence of IoT, Big Data, and Cloud Computing is a pivotal reference source that provides vital research on the relation between these technologies and the impact they collectively have in solving real-world challenges. While highlighting topics such as cloud-based analytics, intelligent algorithms, and information security, this publication explores current issues that remain when attempting to implement these systems as well as the specific applications IoT, big data, and cloud computing have in various professional sectors. This book is ideally designed for academicians, researchers, developers, computer scientists, IT professionals, practitioners, scholars, students, and engineers seeking research on the integration of emerging technologies to solve modern societal issues.

A Fusion of Artificial Intelligence and Internet of Things for Emerging Cyber Systems

A Fusion of Artificial Intelligence and Internet of Things for Emerging Cyber Systems

Author: Pardeep Kumar

Publisher: Springer Nature

ISBN: 9783030766535

Category: Technology & Engineering

Page: 461

View: 114

This book aims at offering a unique collection of ideas and experiences mainly focusing on the main streams and merger of Artificial Intelligence (AI) and the Internet of Things (IoT) for a wide slice of the communication and networking community. In the era when the world is grappling with many unforeseen challenges, scientists and researchers are envisioning smart cyber systems that guarantee sustainable development for a better human life. The main contributors that destined to play a huge role in developing such systems, among others, are AI and IoT. While AI provides intelligence to machines and data by identifying patterns, developing predictions, and detecting anomalies, IoT performs as a nerve system by connecting a huge number of machines and capturing an enormous amount of data. AI-enabled IoT, therefore, redefines the way industries, businesses, and economies function with increased automation and efficiency and reduced human interaction and costs. This book is an attempt to publish innovative ideas, emerging trends, implementation experience, and use-cases pertaining to the merger of AI and IoT. The primary market of this book is centered around students, researchers, academicians, industrialists, entrepreneurs, and professionals working in electrical/computer engineering, IT, telecom/electronic engineering, and related fields. The secondary market of this book is related to individuals working in the fields such as finance, management, mathematics, physics, environment, mechatronics, and the automation industry.

Artificial Intelligence for the Internet of Everything

Artificial Intelligence for the Internet of Everything

Author: William Lawless

Publisher: Academic Press

ISBN: 9780128176375

Category: Computers

Page: 303

View: 224

Artificial Intelligence for the Internet of Everything considers the foundations, metrics and applications of IoE systems. It covers whether devices and IoE systems should speak only to each other, to humans or to both. Further, the book explores how IoE systems affect targeted audiences (researchers, machines, robots, users) and society, as well as future ecosystems. It examines the meaning, value and effect that IoT has had and may have on ordinary life, in business, on the battlefield, and with the rise of intelligent and autonomous systems. Based on an artificial intelligence (AI) perspective, this book addresses how IoE affects sensing, perception, cognition and behavior. Each chapter addresses practical, measurement, theoretical and research questions about how these “things may affect individuals, teams, society or each other. Of particular focus is what may happen when these “things begin to reason, communicate and act autonomously on their own, whether independently or interdependently with other “things . Considers the foundations, metrics and applications of IoE systems Debates whether IoE systems should speak to humans and each other Explores how IoE systems affect targeted audiences and society Discusses theoretical IoT ecosystem models

Artificial Intelligence for Cloud and Edge Computing

Artificial Intelligence for Cloud and Edge Computing

Author: Sanjay Misra

Publisher: Springer Nature

ISBN: 9783030808211

Category: Computers

Page: 350

View: 479

This book discusses the future possibilities of AI with cloud computing and edge computing. The main goal of this book is to conduct analyses, implementation and discussion of many tools (of artificial intelligence, machine learning and deep learning and cloud computing, fog computing, and edge computing including concepts of cyber security) for understanding integration of these technologies. With this book, readers can quickly get an overview of these emerging topics and get many ideas of the future of AI with cloud, edge, and in many other areas. Topics include machine and deep learning techniques for Internet of Things based cloud systems; security, privacy and trust issues in AI based cloud and IoT based cloud systems; AI for smart data storage in cloud-based IoT; blockchain based solutions for AI based cloud and IoT based cloud systems.This book is relevent to researchers, academics, students, and professionals.

Artificial Intelligence Applications for Smart Societies

Artificial Intelligence Applications for Smart Societies

Author: Mohamed Elhoseny

Publisher: Springer Nature

ISBN: 9783030630683

Category: Science

Page: 251

View: 597

This volume discusses recent advances in Artificial Intelligence (AI) applications in smart, internet-connected societies, highlighting three key focus areas. The first focus is on intelligent sensing applications. This section details the integration of Wireless Sensing Networks (WSN) and the use of intelligent platforms for WSN applications in urban infrastructures, and discusses AI techniques on hardware and software systems such as machine learning, pattern recognition, expert systems, neural networks, genetic algorithms, and intelligent control in transportation and communications systems. The second focus is on AI-based Internet of Things (IoT) systems, which addresses applications in traffic management, medical health, smart homes and energy. Readers will also learn about how AI can extract useful information from Big Data in IoT systems. The third focus is on crowdsourcing (CS) and computing for smart cities. this section discusses how CS via GPS devices, GIS tools, traffic cameras, smart cards, smart phones and road deceleration devices enables citizens to collect and share data to make cities smart, and how these data can be applied to address urban issues including pollution, traffic congestion, public safety and increased energy consumption. This book will of interest to academics, researchers and students studying AI, cloud computing, IoT and crowdsourcing in urban applications.

Artificial Intelligence for Internet of Things

Artificial Intelligence for Internet of Things

Author: N. Thillaiarasu

Publisher: CRC Press

ISBN: 9781000779059

Category: Computers

Page: 358

View: 607

The text comprehensively discusses the essentials of the Internet of Things (IoT), machine learning algorithms, industrial and medical IoT, robotics, data analytics tools, and technologies for smart cities. It further covers fundamental concepts, advanced tools, and techniques, along with the concept of energy-efficient systems. It also highlights software and hardware interfacing into the IoT platforms and systems for better understanding. It will serve as an ideal reference text for senior undergraduate, graduate students, and academic researchers in the fields of electrical engineering, electronics and communication engineering, and computer engineering. Features: Covers cognitive Internet of Things and emerging network, IoT in robotics, smart cities, and health care Discusses major issues in the field of the IoTsuch as scalable and secure issues, energy-efficient, and actuator devices Highlights the importance of industrial and medical IoT Illustrates applications of the IoT in robotics, smart grid, and smart cities Presents real-time examples for better understanding The text comprehensively discusses design principles, modernization techniques, advanced developments in artificial intelligence.This will be helpful for senior undergraduates, graduate students, and academic researchers in diverse engineering fields including electrical, electronics and communication, and computer science.

Blockchain Based Internet of Things

Blockchain Based Internet of Things

Author: Debashis De

Publisher: Springer Nature

ISBN: 9789811692604

Category: Blockchains (Databases)

Page: 313

View: 411

The book is aimed to foster knowledge based on Blockchain technology highlighting on the framework basics, operating principles and different incarnations. The fundamental problems encountered in existing blockchain architectures and means for removing those would be covered. It would also touch upon blockchain based IoT systems and applications. The book covers applications and use cases of blockchain technology for industrial IoT systems. In addition, methods for inducing computational intelligence into existing blockchain frameworks thereby thwarting most of the limitations are also discussed. The readers would benefit from the rich technical content in this rapidly emerging field thereby enabling a skilled workforce for the future.

Artificial Intelligence and Internet of Things for Renewable Energy Systems

Artificial Intelligence and Internet of Things for Renewable Energy Systems

Author: Neeraj Priyadarshi

Publisher: Walter de Gruyter GmbH & Co KG

ISBN: 9783110714159

Category: Computers

Page: 318

View: 734

This book explains the application of Artificial Intelligence and Internet of Things on green energy systems. The design of smart grids and intelligent networks enhances energy efficiency, while the collection of environmental data through sensors and their prediction through machine learning models improve the reliability of green energy systems.