Mathematica by Example

Mathematica by Example

Author: Martha L. L. Abell

Publisher: Academic Press

ISBN: 9780128124826

Category: Mathematics

Page: 574

View: 285

Mathematica by Example, Fifth Edition is an essential desk reference for the beginning Mathematica user, providing step-by-step instructions on achieving results from this powerful software tool. The book fully accounts for the dramatic changes to functionality and visualization capabilities in the most recent version of Mathematica (10.4). It accommodates the full array of new extensions in the types of data and problems that Mathematica can immediately handle, including cloud services and systems, geographic and geometric computation, dynamic visualization, interactive applications and other improvements. It is an ideal text for scientific students, researchers and aspiring programmers seeking further understanding of Mathematica. Written by seasoned practitioners with a view to practical implementation and problem-solving, the book's pedagogy is delivered clearly and without jargon using representative biological, physical and engineering problems. Code is provided on an ancillary website to support the use of Mathematica across diverse applications. Provides a clear organization, integrated topic coverage, and accessible exposition for novices Includes step-by-step instructions for the most popular implementations Contains new applications, exercises and examples from a variety of fields, including biology, physics and engineering Supported by a website providing Mathematica code derived from examples in the book

Mathematica by Example

Mathematica by Example

Author: Martha L Abell

Publisher: Academic Press

ISBN: 9781483259284

Category: Mathematics

Page: 670

View: 143

Mathematica by Example presents the commands and applications of Mathematica, a system for doing mathematics on a computer. This text serves as a guide to beginning users of Mathematica and users who do not intend to take advantage of the more specialized applications of Mathematica. The book combines symbolic manipulation, numerical mathematics, outstanding graphics, and a sophisticated programming language. It is comprised of 10 chapters. Chapter 1 gives a brief background of the software and how to install it in the computer. Chapter 2 introduces the essential commands of Mathematica. Basic operations on numbers, expressions, and functions are introduced and discussed. Chapter 3 provides Mathematica's built-in calculus commands. The fourth chapter presents elementary operations on lists and tables. This chapter is a prerequisite for Chapter 5 which discusses nested lists and tables in detail. The purpose of Chapter 6 is to illustrate various computations Mathematica can perform when solving differential equations. Chapters 7, 8, and 9 introduce Mathematica Packages that are not found in most Mathematica reference book. The final chapter covers the Mathematica Help feature. Engineers, computer scientists, physical scientists, mathematicians, business professionals, and students will find the book useful.

Mathematica Graphics Examples

Mathematica Graphics Examples

Author: Dr. Haiduke Sarafian

Publisher: Scientific Research Publishing, Inc. USA

ISBN: 9781618966674

Category: Antiques & Collectibles

Page: 377

View: 844

This book is to be considered a flexible guideline on how to learn and teach Mathematica graphic commands. For instance the class practices and the homework assignments are to be altered, adjusting to the students’ interest. The exam files are samples, and need to be altered accordingly. The book represents how the course was taught by the author; individuals adapting the book have the total freedom to modify and reorganize its contents.

A Course in Ordinary Differential Equations

A Course in Ordinary Differential Equations

Author: Stephen A. Wirkus

Publisher: CRC Press

ISBN: 9781466509108

Category: Mathematics

Page: 807

View: 543

A Course in Ordinary Differential Equations, Second Edition teaches students how to use analytical and numerical solution methods in typical engineering, physics, and mathematics applications. Lauded for its extensive computer code and student-friendly approach, the first edition of this popular textbook was the first on ordinary differential equations (ODEs) to include instructions on using MATLAB®, Mathematica®, and MapleTM. This second edition reflects the feedback of students and professors who used the first edition in the classroom. New to the Second Edition Moves the computer codes to Computer Labs at the end of each chapter, which gives professors flexibility in using the technology Covers linear systems in their entirety before addressing applications to nonlinear systems Incorporates the latest versions of MATLAB, Maple, and Mathematica Includes new sections on complex variables, the exponential response formula for solving nonhomogeneous equations, forced vibrations, and nondimensionalization Highlights new applications and modeling in many fields Presents exercise sets that progress in difficulty Contains color graphs to help students better understand crucial concepts in ODEs Provides updated and expanded projects in each chapter Suitable for a first undergraduate course, the book includes all the basics necessary to prepare students for their future studies in mathematics, engineering, and the sciences. It presents the syntax from MATLAB, Maple, and Mathematica to give students a better grasp of the theory and gain more insight into real-world problems. Along with covering traditional topics, the text describes a number of modern topics, such as direction fields, phase lines, the Runge-Kutta method, and epidemiological and ecological models. It also explains concepts from linear algebra so that students acquire a thorough understanding of differential equations.

Applying Maths in the Chemical and Biomolecular Sciences

Applying Maths in the Chemical and Biomolecular Sciences

Author: Godfrey Beddard

Publisher: Oxford University Press

ISBN: 9780199230914

Category: Mathematics

Page: 786

View: 666

Applying Maths in the Chemical and Biomolecular Sciences uses an extensive array of examples to demonstrate how mathematics is applied to probe and understand chemical and biological systems. It also embeds the use of software, showing how the application of maths and use of software now go hand-in-hand.

Statistics with Mathematica

Statistics with Mathematica

Author: Martha L. Abell

Publisher: Academic Press

ISBN: 0120415542

Category: Mathematics

Page: 632

View: 241

Mathematica's diverse capabilities make it particularly well suited to perform the many calculations encountered in statistics. This book introduces Mathematica for various types of statistical computations. It covers a broad range of topics, and should appeal to both students and professional statisticians. Comprehensive: Covers the use of Mathematica for applications ranging from descriptive statistics, through multiple regression and nonparametric methods; uses virtually all of Mathematica's built-in statistical commands, as well as those contained in various Mathematica packages; Additionally, the authors have written numerous procedures to extend Mathematica's capabilities Easy to read: Uses "by example" approach authors have used in several other books about Mathematica: works for beginners and experts alike Applied: Examples from diverse disciplines, including biostatistics, business, statistics, econometrics, engineering, and psychology Up-to-date: Compatible with Mathematica Version 3

Classical Mechanics

Classical Mechanics

Author: Christopher W. Kulp

Publisher: CRC Press

ISBN: 9781351024365

Category: Science

Page: 456

View: 400

Classical Mechanics: A Computational Approach with Examples using Python and Mathematica provides a unique, contemporary introduction to classical mechanics, with a focus on computational methods. In addition to providing clear and thorough coverage of key topics, this textbook includes integrated instructions and treatments of computation. Full of pedagogy, it contains both analytical and computational example problems within the body of each chapter. The example problems teach readers both analytical methods and how to use computer algebra systems and computer programming to solve problems in classical mechanics. End-of-chapter problems allow students to hone their skills in problem solving with and without the use of a computer. The methods presented in this book can then be used by students when solving problems in other fields both within and outside of physics. It is an ideal textbook for undergraduate students in physics, mathematics, and engineering studying classical mechanics. Features: Gives readers the "big picture" of classical mechanics and the importance of computation in the solution of problems in physics Numerous example problems using both analytical and computational methods, as well as explanations as to how and why specific techniques were used Online resources containing specific example codes to help students learn computational methods and write their own algorithms A solutions manual is available via the Routledge Instructor Hub and extra code is available via the Support Material tab

Elementary Differential Geometry, Revised 2nd Edition

Elementary Differential Geometry, Revised 2nd Edition

Author: Barrett O'Neill

Publisher: Elsevier

ISBN: 0080505422

Category: Mathematics

Page: 520

View: 343

Written primarily for students who have completed the standard first courses in calculus and linear algebra, Elementary Differential Geometry, Revised 2nd Edition, provides an introduction to the geometry of curves and surfaces. The Second Edition maintained the accessibility of the first, while providing an introduction to the use of computers and expanding discussion on certain topics. Further emphasis was placed on topological properties, properties of geodesics, singularities of vector fields, and the theorems of Bonnet and Hadamard. This revision of the Second Edition provides a thorough update of commands for the symbolic computation programs Mathematica or Maple, as well as additional computer exercises. As with the Second Edition, this material supplements the content but no computer skill is necessary to take full advantage of this comprehensive text. Over 36,000 copies sold worldwide Accessible, practical yet rigorous approach to a complex topic--also suitable for self-study Extensive update of appendices on Mathematica and Maple software packages Thorough streamlining of second edition's numbering system Fuller information on solutions to odd-numbered problems Additional exercises and hints guide students in using the latest computer modeling tools

The Power of Geometric Algebra Computing

The Power of Geometric Algebra Computing

Author: Dietmar Hildenbrand

Publisher: CRC Press

ISBN: 9781000461237

Category: Computers

Page: 202

View: 237

Geometric Algebra is a very powerful mathematical system for an easy and intuitive treatment of geometry, but the community working with it is still very small. The main goal of this book is to close this gap from a computing perspective in presenting the power of Geometric Algebra Computing for engineering applications and quantum computing. The Power of Geometric Algebra Computing is based on GAALOPWeb, a new user-friendly, web-based tool for the generation of optimized code for different programming languages as well as for the visualization of Geometric Algebra algorithms for a wide range of engineering applications. Key Features: Introduces a new web-based optimizer for Geometric Algebra algorithms Supports many programming languages as well as hardware Covers the advantages of high-dimensional algebras Includes geometrically intuitive support of quantum computing This book includes applications from the fields of computer graphics, robotics and quantum computing and will help students, engineers and researchers interested in really computing with Geometric Algebra.

Orthogonal Sets and Polar Methods in Linear Algebra

Orthogonal Sets and Polar Methods in Linear Algebra

Author: Enrique Castillo

Publisher: John Wiley & Sons

ISBN: 0471328898

Category: Mathematics

Page: 440

View: 830

A unique, applied approach to problem solving in linear algebra Departing from the standard methods of analysis, this unique book presents methodologies and algorithms based on the concept of orthogonality and demonstrates their application to both standard and novel problems in linear algebra. Covering basic theory of linear systems, linear inequalities, and linear programming, it focuses on elegant, computationally simple solutions to real-world physical, economic, and engineering problems. The authors clearly explain the reasons behind the analysis of different structures and concepts and use numerous illustrative examples to correlate the mathematical models to the reality they represent. Readers are given precise guidelines for: * Checking the equivalence of two systems * Solving a system in certain selected variables * Modifying systems of equations * Solving linear systems of inequalities * Using the new exterior point method * Modifying a linear programming problem With few prerequisites, but with plenty of figures and tables, end-of-chapter exercises as well as Java and Mathematica programs available from the authors' Web site, this is an invaluable text/reference for mathematicians, engineers, applied scientists, and graduate students in mathematics.

The Logical Writings of Karl Popper

The Logical Writings of Karl Popper

Author: David Binder

Publisher: Springer Nature

ISBN: 9783030949266

Category: Philosophy

Page: 552

View: 812

This open access book is the first ever collection of Karl Popper's writings on deductive logic. Karl R. Popper (1902-1994) was one of the most influential philosophers of the 20th century. His philosophy of science ("falsificationism") and his social and political philosophy ("open society") have been widely discussed way beyond academic philosophy. What is not so well known is that Popper also produced a considerable work on the foundations of deductive logic, most of it published at the end of the 1940s as articles at scattered places. This little-known work deserves to be known better, as it is highly significant for modern proof-theoretic semantics. This collection assembles Popper's published writings on deductive logic in a single volume, together with all reviews of these papers. It also contains a large amount of unpublished material from the Popper Archives, including Popper's correspondence related to deductive logic and manuscripts that were (almost) finished, but did not reach the publication stage. All of these items are critically edited with additional comments by the editors. A general introduction puts Popper's work into the context of current discussions on the foundations of logic. This book should be of interest to logicians, philosophers, and anybody concerned with Popper's work.