Integration of Renewables in Power Systems by Multi-Energy System Interaction

Integration of Renewables in Power Systems by Multi-Energy System Interaction

Author: Birgitte Bak-Jensen

Publisher: MDPI

ISBN: 9783036503424

Category: Technology & Engineering

Page: 358

View: 984

This book focuses on the interaction between different energy vectors, that is, between electrical, thermal, gas, and transportation systems, with the purpose of optimizing the planning and operation of future energy systems. More and more renewable energy is integrated into the electrical system, and to optimize its usage and ensure that its full production can be hosted and utilized, the power system has to be controlled in a more flexible manner. In order not to overload the electrical distribution grids, the new large loads have to be controlled using demand response, perchance through a hierarchical control set-up where some controls are dependent on price signals from the spot and balancing markets. In addition, by performing local real-time control and coordination based on local voltage or system frequency measurements, the grid hosting limits are not violated.

Efficiency of heat and work in a regional energy system

Efficiency of heat and work in a regional energy system

Author: Tommy Rosén

Publisher: Linköping University Electronic Press

ISBN: 9789179299347

Category:

Page: 61

View: 195

One of the largest flows of energy in Swedish municipalities is the fuel-energy flow through the regional combined heat and power (CHP) plant. The customer products from this flow are mainly electricity to the electricity grid and heat to the building sector. There are many ways to describe and examine this fuel-energy flow, and there are many perspectives. This thesis presents one perspective. It is a top-down, analytical and numerical perspective on the efficiency of heat and work in a regional energy system. The analysis focus on the present situation in Linköping municipality and aims at describing the energy efficiency improvement potential. Three subsystems are considered, the regional production of electricity, the regional production of heat, and the regional public transport by bus. These three systems are physically all heat engines i.e. engines that derive work and/or heat from fuel combustion processes. It is important to notice that the analysis in this thesis does not describe the theoretical improvement potential, that potential is considerably higher than the implementable potential, but of no practical use. Instead the analysis is as far as possible based on real world measured efficiencies and efficiency values of best practice (Best available technology). The analysis shows that hardware investments at the CHP plant can improve the electricity generation efficiency and thereby reduce CO2 emissions. The investments are in high pressure turbines, medium pressure turbines and preheaters. The size of the improvement is hard to quantify because it depends partly on unknown factors in the surrounding electricity market. In the studied system CO2 reduction could be as high as 40 - 60 %. The regionally produced biogas would be used more efficiently if it were used in the local combined cycle gas turbine instead of being used in internal combustion engines in buses. The buses would instead be electrically driven. This use of biogas would create a better integrated fuel-energy flow and reduce heat losses. Another improvement is to reduce the system temperatures in the district heating system. The study shows that the efficiency gains, because of lower system temperatures, would increase electricity production by about 1 – 3%, and that greenhouse gas emissions would be reduced by 4 – 20%. However, these improvements are dependent on demand side investments in the district heating system and are therefore slow to implement. Ett av de största energiflödena i svenska kommuner är bränsle/energi-flödet genom det regionala kraftvärmeverket. De konsumentprodukter som detta energiflöde producerar är främst uppvärmning av bostäder och elkraft. Det finns många sätt att beskriva och utvärdera detta bränsle/energi-flöde och det finns många olika perspektiv. Det här arbetet analyserar energiflödet med en analytisk ”top-down” metod. Analysen utgår ifrån den nuvarande situationen i Linköpings kommun och avser att belysa den förbättringspotential som finns med avseende på systemets verkningsgrad. Tre delsystem har studerats, det regionala systemet för värmeproduktion, det regionala systemet för elproduktion och det regionala kollektivtrafiksystemet för innerstadstrafik med buss. Dessa tre system är fysikaliskt värmemotorer d.v.s. de är system som nyttjar termisk energi från förbränningsprocesser för att utföra ett arbete och/eller generera värme. Det är viktigt att notera att analyserna i detta arbete inte avser att beskriva en teoretisk förbättringspotential. Analyserna avser istället att belysa den praktiska, implementerbara, förbättringspotentialen. Därför har arbetet så långt som möjligt utgått ifrån uppmätta data och numeriska värden på verkningsgrader ifrån redan existerande anläggningar eller tekniska komponenter. Analyserna visar att hårdvaruinvesteringar i det lokala kraftvärmeverket skulle öka elproduktionen och därigenom sänka koldioxidutsläppen. De investeringar som skulle behöva göras är investeringar i högtrycksturbiner, mellantrycksturbiner och förvärmare. De sänkta koldioxidutsläppen är svåra att kvantifiera eftersom de delvis beror på okända faktorer på den omgivande elmarknaden. Reduktionen av koldioxidutsläppen skulle kunna vara så stor som 40 - 60 %. Den lokalt producerade biogasen skulle användas mer effektivt om den användes i den lokala gaskombi-anläggningen istället för att användas som bussbränsle som är det nuvarande användningsområdet för detta bränsle. Bussarna skulle istället kunna ersättas med elbussar. En sådan förändring av biogas-användningen skulle innebära ett bättre integrerat energisystem med lägre värmeförluster. En annan möjlig förbättring av kraftvärmesystemet är att sänka returtemperaturerna i fjärrvärmesystemet. Analyserna visar att elverkningsgraden skulle förbättras 1 – 3 % och att koldioxidutsläppen skulle kunna minska med 4 – 20 %. Dessa förbättringar skulle däremot kräva investeringar på kraftvärmesystemets kundsida och bedöms därför vara långsamma att implementera.

Advances in Energy System Optimization

Advances in Energy System Optimization

Author: Valentin Bertsch

Publisher: Springer

ISBN: 9783319517957

Category: Mathematics

Page: 245

View: 305

The papers presented in this volume address diverse challenges in energy systems, ranging from operational to investment planning problems, from market economics to technical and environmental considerations, from distribution grids to transmission grids and from theoretical considerations to data provision concerns and applied case studies. The International Symposium on Energy System Optimization (ISESO) was held on November 9th and 10th 2015 at the Heidelberg Institute for Theoretical Studies (HITS) and was organized by HITS, Heidelberg University and Karlsruhe Institute of Technology.

District Energy System Design

District Energy System Design

Author: Christian Inard

Publisher: MDPI

ISBN: 9783039363667

Category: Technology & Engineering

Page: 176

View: 234

The articles presented in this Special Issue cover different aspects of the urban planning process, such as simulation, optimization or decision-making. The authors highlighted the importance of performing an integrated design of the district, considering different sectors, different energy vectors and different operation modes. In order to better integrate renewable and residual energy sources (R²ES), careful design of systems and storage solutions should be performed. Different storage solutions were tested, ranging from large-scale thermal energy storage to vehicle batteries or the thermal mass of buildings. Van der Heijde et al. (2019) proposed a two-layer design optimization algorithm to design a district heating network with solar thermal collectors, seasonal thermal energy storage and excess heat injection. Pajot et al. (2019) also performed an optimization of the sizing and control of energy systems in a district equipped with heat pumps, with thermal energy storage or thermal mass utilization. A hybrid distribution system, coupling the thermal and electrical networks, was proposed by Widl et al. (2019). Arnaudo et al. (2019) used the vehicle-to-grid (V2G) concept to decrease the overloading of the electrical distribution network during heat pump operation. Finally, Kazmi et al. (2019) proposed an integrated decision-making planning approach for a better integration of R²ES in the distribution network. The complexity of urban planning leads to the development of new tools and methodologies. Until now, operation was poorly integrated in the design phase. New urban building energy modeling tools were proposed by the different authors. These tools are either based on co-simulations or integrated solutions to be able to capture the fine dynamics of a district. The difficulty of generating the input data for the models was also discussed. Regarding the methodology, most articles proposed a two-stage optimization procedure to optimize both the operational and design aspects. Mixed-integer linear programming (MILP) and genetic algorithms were often used to find optimal solutions.

Thermal Energy Systems

Thermal Energy Systems

Author: Steven G. Penoncello

Publisher: CRC Press

ISBN: 9781351736572

Category: Science

Page: 453

View: 991

Thermal Energy Systems: Design and Analysis, Second Edition presents basic concepts for simulation and optimization, and introduces simulation and optimization techniques for system modeling. This text addresses engineering economy, optimization, hydraulic systems, energy systems, and system simulation. Computer modeling is presented, and a companion website provides specific coverage of EES and Excel in thermal-fluid design. Assuming prior coursework in basic thermodynamics and fluid mechanics, this fully updated and improved text will guide students in Mechanical and Chemical Engineering as they apply their knowledge to systems analysis and design, and to capstone design project work.

The Future European Energy System

The Future European Energy System

Author: Dominik Möst

Publisher: Springer Nature

ISBN: 9783030609146

Category: Business & Economics

Page: 309

View: 719

This open access book analyzes the transition toward a low-carbon energy system in Europe under the aspects of flexibility and technological progress. By covering the main energy sectors – including the industry, residential, tertiary and transport sector as well as the heating and electricity sector – the analysis assesses flexibility requirements in a cross-sectoral energy system with high shares of renewable energies. The contributing authors – all European energy experts – apply models and tools from various research fields, including techno-economic learning, fundamental energy system modeling, and environmental and social life cycle as well as health impact assessment, to develop an innovative and comprehensive energy models system (EMS). Moreover, the contributions examine renewable penetrations and their contributions to climate change mitigation, and the impacts of available technologies on the energy system. Given its scope, the book appeals to researchers studying energy systems and markets, professionals and policymakers of the energy industry and readers interested in the transformation to a low-carbon energy system in Europe.

Wind Solar Hybrid Renewable Energy System

Wind Solar Hybrid Renewable Energy System

Author: Kenneth Eloghene Okedu

Publisher: BoD – Books on Demand

ISBN: 9781789845907

Category: Technology & Engineering

Page: 254

View: 592

This book provides a platform for scientists and engineers to comprehend the technologies of solar wind hybrid renewable energy systems and their applications. It describes the thermodynamic analysis of wind energy systems, and advanced monitoring, modeling, simulation, and control of wind turbines. Based on recent hybrid technologies considering wind and solar energy systems, this book also covers modeling, design, and optimization of wind solar energy systems in conjunction with grid-connected distribution energy management systems comprising wind photovoltaic (PV) models. In addition, solar thermochemical fuel generation topology and evaluation of PV wind hybrid energy for a small island are also included in this book. Since energy storage plays a vital role in renewable energy systems, another salient part of this book addresses the methodology for sizing hybrid battery-backed power generation systems in off-grid connected locations. Furthermore, the book proposes solutions for sustainable rural development via passive solar housing schemes, and the impacts of renewable energies in general, considering social, economic, and environmental factors. Because this book proposes solutions based on recent challenges in the area of hybrid renewable technologies, it is hoped that it will serve as a useful reference to readers who would like to be acquainted with new strategies of control and advanced technology regarding wind solar hybrid systems

Analysis of renewable energy integration options in urban energy systems with centralized energy parks

Analysis of renewable energy integration options in urban energy systems with centralized energy parks

Author: Ricardo Peniche Garcia

Publisher: Cuvillier Verlag

ISBN: 9783736986084

Category: Technology & Engineering

Page: 130

View: 791

Several variations to the composition and operation strategy of a metropolitan region’s centralized energy park are analyzed in this work. These variations are defined in an attempt to increase the system's share of renewable energy (RE) in electricity and district heating consumption, as well as the share of power from Combined Heat and Power (CHP) plants in electricity consumption. A decrease in the system’s total annual CO2 emissions and total annual costs is also pursued. In particular, two RE integration options are analyzed: Power to Heat (PtH) units, and Power to Gas to Combined Heat and Power (PtGtCHP) plants. In dieser Arbeit werden mehrere Variationen zur zentralen Energieversorgung einer Metropolregion modelliert, simuliert und analysiert. Ziel dieser Variationen ist es, zum einen den Anteil Erneuerbarer Energien (EE) in der Strom- und Fernwärmeversorgung und zum anderen den Anteil des Stroms aus Kraft-Wärme-Kopplungsanlagen in der Stromversorgung zu erhöhen. Dabei wird auch eine Verringerung der jährlichen CO2-Emissionen sowie der jährlichen Gesamtkosten des Systems angestrebt. Insbesondere werden zwei Optionen für die Integration der EE analysiert: „Power to Heat“-Anlagen (PtH) und „Power to Gas to Combined Heat and Power“-Anlagen (PtGtCHP).

Agile Energy Systems

Agile Energy Systems

Author: Woodrow W. Clark

Publisher: Elsevier Science Limited

ISBN: UOM:39015059323603

Category: Business & Economics

Page: 520

View: 748

Empowering decision makers by setting the vision for a new approach to energy systems and providing the tools and plans to achieve these objectives Provides specific and actionable public policy and programme tools Help solve energy issues worldwide by illustrating how the lessons learned from the California energy crisis can be used to create an agile energy system for any region in a country Due to the recent catastrophic energy system failures in California along with those in the North-Eastern US and Southern Canada, London, and Italy, the time has come to proclaim the failure of deregulation, privatization or liberalization and propose a new energy system. Agile Energy Systems shows in the first section, how five precipitating forces led to the deregulation debacle in California: (1) major technological changes and commercialization, (2) regulatory needs mismatched to societal adjustments, (3) inadequate and flawed economic models, (4) lack of vision, goals, and planning leading to energy failures, and (5) failure and lack of economic regional development. The second half of the book examines how "civic market", new economic models, and planning for a sustainable economic environment counteracted these five forces to create an "agile energy system". This system is based on renewable energy generation, hybrid or combined and distributed generation technologies. Such an agile system can be a new paradigm for both energy efficiency and reliability for any region or country, in contrast to the brittle centralized energy grid systems created by deregulation. Furthermore, the book overviews how the future of energy systems rests in the emerging "clean" hydrogen economy. Empowering decision makers by setting the vision for a new approach to energy systems and providing the tools and plans to achieve these objectives Provides specific and actionable public policy and program tools Helping to solve energy issues worldwide by illustrating how the lessons learned from the California energy crisis can be used to create an "agile energy system" for any region or country

Advances in Energy Systems

Advances in Energy Systems

Author: Peter D. Lund

Publisher: John Wiley & Sons

ISBN: 9781119508281

Category: Science

Page: 576

View: 647

A guide to a multi-disciplinary approach that includes perspectives from noted experts in the energy and utilities fields Advances in Energy Systems offers a stellar collection of articles selected from the acclaimed journal Wiley Interdisciplinary Review: Energy and Environment. The journalcovers all aspects of energy policy, science and technology, environmental and climate change. The book covers a wide range of relevant issues related to the systemic changes for large-scale integration of renewable energy as part of the on-going energy transition. The book addresses smart energy systems technologies, flexibility measures, recent changes in the marketplace and current policies. With contributions from a list of internationally renowned experts, the book deals with the hot topic of systems integration for future energy systems and energy transition. This important resource: Contains contributions from noted experts in the field Covers a broad range of topics on the topic of renewable energy Explores the technical impacts of high shares of wind and solar power Offers a review of international smart-grid policies Includes information on wireless power transmission Presents an authoritative view of micro-grids Contains a wealth of other relevant topics Written forenergy planners, energy market professionals and technology developers, Advances in Energy Systems is an essential guide with contributions from an international panel of experts that addresses the most recent smart energy technologies.

Renewable Energy Systems

Renewable Energy Systems

Author: Dilwyn Jenkins

Publisher: Routledge

ISBN: 9781136302732

Category: Technology & Engineering

Page: 407

View: 639

This book is the long awaited guide for anyone interested in renewables at home or work. It sweeps away scores of common misconceptions while clearly illustrating the best in renewable and energy efficiency technologies. A fully illustrated guide to renewable energy for the home and small business, the book provides an expert overview of precisely which sustainable energy technologies are appropriate for wide-spread domestic and small business application. The sections on different renewable energy options provide detailed descriptions of each technology along with case studies, installation diagrams and colour photographs, showing precisely what is possible for the average household. The chapter on how to select the renewable technology most appropriate for ordinary homes and businesses summarizes this analysis in a neat and easy to use table and demonstrates with examples exactly how to assess your local renewable resources. Renewable technologies covered include wood energy, wind power, solar photovoltaics, solar thermal, passive solar, geothermal and air-to-air heat pumps as well as water or hydro based energy systems – plus the all-important subject of energy efficiency. Whilst written to be accessible to a wide audience, the book is targeted at readers who are keen to work with renewable technologies, students, building engineers, architects, planners, householders and home-owners.