Topology and Physics of Circular DNA (1992)

Topology and Physics of Circular DNA (1992)

Author: Alexander Vologodskii

Publisher: CRC Press

ISBN: 9781351355827

Category: Medical

Page: 246

View: 659

Topology and Physics of Circular DNA presents comprehensive coverage of the physical properties of circular DNA. The author examines how topological constraints arising from cyclization of DNA lead to distinctive properties that make closed molecules radically different from linear DNA. The phenomenon of supercoiling, its geometric and topological analysis, and the formation of noncanonical structures in circular DNA under the influence of supercoiling are emphasized. The combination of consistent theoretical analysis and detailed treatment of major experimental approaches make Topology and Physics of Circular DNA an important reference volume for biophysicists, biochemists, molecular biologists, and researchers and students who want to expand their understanding of circular DNA.

Topology and Physics of Circular DNA (1992)

Topology and Physics of Circular DNA (1992)

Author: Alexander Vologodskii

Publisher: CRC Press

ISBN: 9781351355834

Category: Medical

Page: 192

View: 500

Topology and Physics of Circular DNA presents comprehensive coverage of the physical properties of circular DNA. The author examines how topological constraints arising from cyclization of DNA lead to distinctive properties that make closed molecules radically different from linear DNA. The phenomenon of supercoiling, its geometric and topological analysis, and the formation of noncanonical structures in circular DNA under the influence of supercoiling are emphasized. The combination of consistent theoretical analysis and detailed treatment of major experimental approaches make Topology and Physics of Circular DNA an important reference volume for biophysicists, biochemists, molecular biologists, and researchers and students who want to expand their understanding of circular DNA.

Atomic Force Microscopy in Cell Biology

Atomic Force Microscopy in Cell Biology

Author:

Publisher: Academic Press

ISBN: 9780080549446

Category: Science

Page: 415

View: 632

This is the first book to cover the history, structure, and application of atomic force microscopy in cell biology. Presented in the clear, well-illustrated style of the Methods in Cell Biology series, it introduces the AFM to its readers and enables them to tap the power and scope of this technology to further their own research. A practical laboratory guide for use of the atomic force and photonic force microscopes, it provides updated technology and methods in force spectroscopy. It is also a comprehensive and easy-to-follow practical laboratory guide for the use of the AFM and PFM in biological research.

Cyclic Polymers

Cyclic Polymers

Author: E.R. Semlyen

Publisher: Springer Science & Business Media

ISBN: 9780306471179

Category: Technology & Engineering

Page: 790

View: 475

Cyclic Polymers (Second Edition) reviews the many recent advances in this rapidly expanding subject since the publication of the first edition in 1986. The preparation, characterisation, properties and applications of a wide range of organic and inorganic cyclic oligomers and polymers are described in detail, together with many examples of catenanes and rotaxanes. The importance of large cyclics in biological chemistry and molecular biology is emphasised by a wide coverage of circular DNA, cyclic peptides and cyclic oligosaccharides and polysaccharides. Experimental techniques and theoretical aspects of cyclic polymers are included, as well as examples of their uses such as ring opening polymerisation reactions to give commercially important materials. This book covers a wide range of topics which should be of interest to many scientific research workers (for example, in polymer science, chemistry and molecular biology), as well as providing a reference text for undergraduate and graduate students.

New Trends in Geometry

New Trends in Geometry

Author: Luciano Boi

Publisher: World Scientific

ISBN: 9781848166431

Category: Mathematics

Page: 329

View: 425

This volume focuses on the interactions between mathematics, physics, biology and neuroscience by exploring new geometrical and topological modelling in these fields. Among the highlights are the central roles played by multilevel and scale-change approaches in these disciplines. The integration of mathematics with physics, as well as molecular and cell biology and the neurosciences, will constitute the new frontier of 21st century science, where breakthroughs are more likely to span across traditional disciplines.

Links Between Recombination and Replication

Links Between Recombination and Replication

Author: Proceedings of the National Academy of Sciences

Publisher: National Academies Press

ISBN: 9780309074247

Category: Electronic book

Page: 303

View: 833

There has been a sea change in how we view genetic recombination. When germ cells are produced in higher organisms, genetic recombination assures the proper segregation of like chromosomes. In the course of that process, called meiosis, recombination not only assures segregation of one chromosome of each type to progeny germ cells, but also further shuffles the genetic deck, contributing to the unique inheritance of individuals. In a nutshell, that is the classical view of recombination. We have also known for many years that in bacteria recombination plays a role in horizontal gene transfer and in replication itself, the latter by establishing some of the replication forks that are the structural scaffolds for copying DNA. In recent years, however, we have become increasingly aware that replication, which normally starts without any help from recombination, is a vulnerable process that frequently leads to broken DNA. The enzymes of recombination play a vital role in the repair of those breaks. The recombination enzymes can function via several different pathways that mediate the repair of breaks, as well as restoration of replication forks that are stalled by other kinds of damage to DNA. Thus, to the classical view of recombination as an engine of inheritance we must add the view of recombination as a vital housekeeping function that repairs breaks suffered in the course of replication. We have also known for many years that genomic instability--including mutations, chromosomal rearrangements, and aneuploidy--is a hallmark of cancer cells. Although genomic instability has many contributing causes, including faulty replication, there are many indications that recombination, faulty or not, contributes to genome instability and cancer as well. The (Nas colloquium) Links Between Recombination and Replication: Vital Roles of Recombination was convened to broaden awareness of this evolving area of research. Papers generated by this colloquium are published here. To encourage the desired interactions of specialists, we invited some contributions that deal only with recombination or replication in addition to contributions on the central thesis of functional links between recombination and replication. To aid the nonspecialist and specialist alike, we open the set of papers with a historical overview by Michael Cox and we close the set with a commentary on the meeting and the field by Andrei Kuzminov.

Cyclic Polymers

Cyclic Polymers

Author: J. A. Semlyen

Publisher: Springer Science & Business Media

ISBN: 9780412830907

Category: Science

Page: 804

View: 420

Cyclic Polymers (Second Edition) reviews the many recent advances in this rapidly expanding subject since the publication of the first edition in 1986. The preparation, characterisation, properties and applications of a wide range of organic and inorganic cyclic oligomers and polymers are described in detail, together with many examples of catenanes and rotaxanes. The importance of large cyclics in biological chemistry and molecular biology is emphasised by a wide coverage of circular DNA, cyclic peptides and cyclic oligosaccharides and polysaccharides. Experimental techniques and theoretical aspects of cyclic polymers are included, as well as examples of their uses such as ring opening polymerisation reactions to give commercially important materials. This book covers a wide range of topics which should be of interest to many scientific research workers (for example, in polymer science, chemistry and molecular biology), as well as providing a reference text for undergraduate and graduate students.

Biophysics

Biophysics

Author: William Bialek

Publisher: Princeton University Press

ISBN: 9780691138916

Category: Science

Page: 656

View: 395

A physicist's guide to the phenomena of life Interactions between the fields of physics and biology reach back over a century, and some of the most significant developments in biology—from the discovery of DNA's structure to imaging of the human brain—have involved collaboration across this disciplinary boundary. For a new generation of physicists, the phenomena of life pose exciting challenges to physics itself, and biophysics has emerged as an important subfield of this discipline. Here, William Bialek provides the first graduate-level introduction to biophysics aimed at physics students. Bialek begins by exploring how photon counting in vision offers important lessons about the opportunities for quantitative, physics-style experiments on diverse biological phenomena. He draws from these lessons three general physical principles—the importance of noise, the need to understand the extraordinary performance of living systems without appealing to finely tuned parameters, and the critical role of the representation and flow of information in the business of life. Bialek then applies these principles to a broad range of phenomena, including the control of gene expression, perception and memory, protein folding, the mechanics of the inner ear, the dynamics of biochemical reactions, and pattern formation in developing embryos. Featuring numerous problems and exercises throughout, Biophysics emphasizes the unifying power of abstract physical principles to motivate new and novel experiments on biological systems. Covers a range of biological phenomena from the physicist's perspective Features 200 problems Draws on statistical mechanics, quantum mechanics, and related mathematical concepts Includes an annotated bibliography and detailed appendixes

DNA Conformation and Transcription

DNA Conformation and Transcription

Author: Takashi Ohyama

Publisher: Springer Science & Business Media

ISBN: 9780387291482

Category: Medical

Page: 211

View: 781

Despite remarkable progress in genome science, we are still far from a clear understanding of how genomic DNA is packaged without entanglement into a nucleus, how genes are wrapped up in chromatin, how chromatin structure is faithfully inherited from mother to daughter cells, and how the differential expression of genes is enabled in a given cell type. Exploring and answering these questions constitutes one of the next frontiers in the 21st century. We are just beginning to appreciate how Multifarious DNA structures provide additional structural and functional dimensions to chromatin organization and gene expression. DNA Conformation and Transcription is the first book that compiles the fruits of the studies that have been performed to date to solve the riddle ‘written’ in DNA conformation ("conformation code"). This book provides a comprehensive overview of the field by covering history of the field, up-to-date topics, clarifications of present day research, and future perspective of what is still to be discovered. Thus, it serves as an invaluable source of information on the "conformation code".